13 research outputs found

    Molecular Mechanisms Underlying Synaptic Connectivity in C. elegans

    Get PDF
    Proper synaptic connectivity is critical for communication between cells and information processing in the brain. Neurons are highly interconnected, forming synapses with multiple partners, and these connections are often refined during the course of development. While decades of research have elucidated many molecular players that regulate these processes, understanding their specific roles can be difficult due to the large number of synapses and complex circuitry in the brain. In this thesis, I investigate mechanisms that establish neural circuits in the simple organism C. elegans, allowing us to address this important problem with single cell resolution in vivo. First, I investigate remodeling of excitatory synapses during development. I show that the immunoglobulin domain protein OIG-1 alters the timing of remodeling, demonstrating that OIG-1 stabilizes synapses in early development but is less critical for the formation of mature synapses. Second, I explore how presynaptic excitatory neurons instruct inhibitory synaptic connectivity. My work shows that disruption of cholinergic neurons alters the pattern of connectivity in partnering GABAergic neurons, and defines a time window during development in which cholinergic signaling appears critical. Lastly, I define novel postsynaptic specializations in GABAergic neurons that bear striking similarity to dendritic spines, and show that presynaptic nrx-1/neurexin is required for the development of spiny synapses. In contrast, cholinergic connectivity with their other postsynaptic partners, muscle cells, does not require nrx-1/neurexin. Thus, distinct molecular signals govern connectivity with these two cell types. Altogether, my findings identify fundamental principles governing synapse development in both the developing and mature nervous system

    A tale of two receptors: Dual roles for ionotropic acetylcholine receptors in regulating motor neuron excitation and inhibition

    Get PDF
    Nicotinic or ionotropic acetylcholine receptors (iAChRs) mediate excitatory signaling throughout the nervous system, and the heterogeneity of these receptors contributes to their multifaceted roles. Our recent work has characterized a single iAChR subunit, ACR-12, which contributes to two distinct iAChR subtypes within the C. elegans motor circuit. These two receptor subtypes regulate the coordinated activity of excitatory (cholinergic) and inhibitory (GABAergic) motor neurons. We have shown that the iAChR subunit ACR-12 is differentially expressed in both cholinergic and GABAergic motor neurons within the motor circuit. In cholinergic motor neurons, ACR-12 is incorporated into the previously characterized ACR-2 heteromeric receptor, which shows non-synaptic localization patterns and plays a modulatory role in controlling circuit function.(1) In contrast, a second population of ACR-12-containing receptors in GABAergic motor neurons, ACR-12GABA, shows synaptic expression and regulates inhibitory signaling.(2) Here, we discuss the two ACR-12-containing receptor subtypes, their distinct expression patterns, and functional roles in the C. elegans motor circuit. We anticipate our continuing studies of iAChRs in the C. elegans motor circuit will lead to novel insights into iAChR function in the nervous system as well as mechanisms for their regulation

    ACR-12 ionotropic acetylcholine receptor complexes regulate inhibitory motor neuron activity in Caenorhabditis elegans

    Get PDF
    Heterogeneity in the composition of neurotransmitter receptors is thought to provide functional diversity that may be important in patterning neural activity and shaping behavior (Dani and Bertrand, 2007; Sassoe-Pognetto, 2011). However, this idea has remained difficult to evaluate directly because of the complexity of neuronal connectivity patterns and uncertainty about the molecular composition of specific receptor types in vivo. Here we dissect how molecular diversity across receptor types contributes to the coordinated activity of excitatory and inhibitory motor neurons in the nematode Caenorhabditis elegans. We show that excitatory and inhibitory motor neurons express distinct populations of ionotropic acetylcholine receptors (iAChRs) requiring the ACR-12 subunit. The activity level of excitatory motor neurons is influenced through activation of nonsynaptic iAChRs (Jospin et al., 2009; Barbagallo et al., 2010). In contrast, synaptic coupling of excitatory and inhibitory motor neurons is achieved through a second population of iAChRs specifically localized at postsynaptic sites on inhibitory motor neurons. Loss of ACR-12 iAChRs from inhibitory motor neurons leads to reduced synaptic drive, decreased inhibitory neuromuscular signaling, and variability in the sinusoidal motor pattern. Our results provide new insights into mechanisms that establish appropriately balanced excitation and inhibition in the generation of a rhythmic motor behavior and reveal functionally diverse roles for iAChR-mediated signaling in this process

    Neurexin Directs Partner-Specific Synaptic Connectivity in \u3cem\u3eC. elegans\u3c/em\u3e

    Get PDF
    In neural circuits, individual neurons often make projections onto multiple postsynaptic partners. Here, we investigate molecular mechanisms by which these divergent connections are generated, using dyadic synapses in C. elegans as a model. We report that C. elegans nrx-1/neurexin directs divergent connectivity through differential actions at synapses with partnering neurons and muscles. We show that cholinergic outputs onto neurons are, unexpectedly, located at previously undefined spine-like protrusions from GABAergic dendrites. Both these spine-like features and cholinergic receptor clustering are strikingly disrupted in the absence of nrx-1. Excitatory transmission onto GABAergic neurons, but not neuromuscular transmission, is also disrupted. Our data indicate that NRX-1 located at presynaptic sites specifically directs postsynaptic development in GABAergic neurons. Our findings provide evidence that individual neurons can direct differential patterns of connectivity with their post-synaptic partners through partner-specific utilization of synaptic organizers, offering a novel view into molecular control of divergent connectivity

    Kinesin-3 mediated axonal delivery of presynaptic neurexin stabilizes dendritic spines and postsynaptic components

    Get PDF
    The functional properties of neural circuits are defined by the patterns of synaptic connections between their partnering neurons, but the mechanisms that stabilize circuit connectivity are poorly understood. We systemically examined this question at synapses onto newly characterized dendritic spines of C. elegans GABAergic motor neurons. We show that the presynaptic adhesion protein neurexin/NRX-1 is required for stabilization of postsynaptic structure. We find that early postsynaptic developmental events proceed without a strict requirement for synaptic activity and are not disrupted by deletion of neurexin/nrx-1. However, in the absence of presynaptic NRX-1, dendritic spines and receptor clusters become destabilized and collapse prior to adulthood. We demonstrate that NRX-1 delivery to presynaptic terminals is dependent on kinesin-3/UNC-104 and show that ongoing UNC-104 function is required for postsynaptic maintenance in mature animals. By defining the dynamics and temporal order of synapse formation and maintenance events in vivo, we describe a mechanism for stabilizing mature circuit connectivity through neurexin-based adhesion

    Neurexin directs partner-specific synaptic connectivity in C. elegans

    Get PDF
    In neural circuits, individual neurons often make projections onto multiple postsynaptic partners. Here, we investigate molecular mechanisms by which these divergent connections are generated, using dyadic synapses in C. elegans as a model. We report that C. elegans nrx-1/neurexin directs divergent connectivity through differential actions at synapses with partnering neurons and muscles. We show that cholinergic outputs onto neurons are, unexpectedly, located at previously undefined spine-like protrusions from GABAergic dendrites. Both these spine-like features and cholinergic receptor clustering are strikingly disrupted in the absence of nrx-1. Excitatory transmission onto GABAergic neurons, but not neuromuscular transmission, is also disrupted. Our data indicate that NRX-1 located at presynaptic sites specifically directs postsynaptic development in GABAergic neurons. Our findings provide evidence that individual neurons can direct differential patterns of connectivity with their post-synaptic partners through partner-specific utilization of synaptic organizers, offering a novel view into molecular control of divergent connectivity

    Emerging Technologies in the Analysis of C. elegans Nicotinic Acetylcholine Receptors

    No full text
    Genetic studies in the model organism Caenorhabditis elegans have made valuable contributions to continuing advances in our understanding of cholinergic synapse biology and cholinergic transmission. C. elegans possesses a large and diverse family of nicotinic acetylcholine receptor (nAChR) subunits that share significant sequence similarity with vertebrate nAChR subunits. As is the case for vertebrates, C. elegans nAChR subtypes mediate excitatory synaptic responses to ACh release at the neuromuscular junction and are also widely expressed in the nervous system. Detailed knowledge of C. elegans neural connectivity patterns (wiring diagram), coupled with the ease of genetic manipulations in this system, enables high-resolution investigations into functional roles for specific receptor subtypes in the context of anatomically defined circuits. In this chapter, we review methods for the analysis of C. elegans nAChRs with an emphasis on strategies for identifying and characterizing genes involved in their biological regulation in the nervous system. These methods can be easily adapted to the study of other organisms as well as other receptor classes

    Excitatory neurons sculpt GABAergic neuronal connectivity in the C. elegans motor circuit

    Get PDF
    Establishing and maintaining the appropriate number of GABA synapses is key for balancing excitation and inhibition in the nervous system, though we have only a limited understanding of the mechanisms controlling GABA circuit connectivity. Here, we show that disrupting cholinergic innervation of GABAergic neurons in the C. elegans motor circuit alters GABAergic neuron synaptic connectivity. These changes are accompanied by a reduced frequency and increased amplitude of GABAergic synaptic events. Acute genetic disruption in early development-during the integration of post-embryonic born GABAergic neurons into the circuit-produces irreversible effects on GABAergic synaptic connectivity that mimic those produced by chronic manipulations. In contrast, acute genetic disruption of cholinergic signaling in the adult circuit does not reproduce these effects. Our findings reveal that GABAergic signaling is regulated by cholinergic neuronal activity, likely through distinct mechanisms in the developing and mature nervous system

    Transcriptional Control of Synaptic Remodeling through Regulated Expression of an Immunoglobulin Superfamily Protein

    Get PDF
    Neural circuits are actively remodeled during brain development, but the molecular mechanisms that trigger circuit refinement are poorly understood. Here, we describe a transcriptional program in C. elegans that regulates expression of an Ig domain protein, OIG-1, to control the timing of synaptic remodeling. DD GABAergic neurons reverse polarity during larval development by exchanging the locations of pre- and postsynaptic components. In newly born larvae, DDs receive cholinergic inputs in the dorsal nerve cord. These inputs are switched to the ventral side by the end of the first larval (L1) stage. VD class GABAergic neurons are generated in the late L1 and are postsynaptic to cholinergic neurons in the dorsal nerve cord but do not remodel. We investigated remodeling of the postsynaptic apparatus in DD and VD neurons using targeted expression of the acetylcholine receptor (AChR) subunit, ACR-12::GFP. We determined that OIG-1 antagonizes the relocation of ACR-12 from the dorsal side in L1 DD neurons. During the L1/L2 transition, OIG-1 is downregulated in DD neurons by the transcription factor IRX-1/Iroquois, allowing the repositioning of synaptic inputs to the ventral side. In VD class neurons, which normally do not remodel, the transcription factor UNC-55/COUP-TF turns off IRX-1, thus maintaining high levels of OIG-1 to block the removal of dorsally located ACR-12 receptors. OIG-1 is secreted from GABA neurons, but its anti-plasticity function is cell autonomous and may not require secretion. Our study provides a novel mechanism by which synaptic remodeling is set in motion through regulated expression of an Ig domain protein

    Use of urine biomarker-derived clusters to predict the risk of chronic kidney disease and all-cause mortality in HIV-infected women

    No full text
    BackgroundAlthough individual urine biomarkers are associated with chronic kidney disease (CKD) incidence and all-cause mortality in the setting of HIV infection, their combined utility for prediction remains unknown.MethodsWe measured eight urine biomarkers shown previously to be associated with incident CKD and mortality risk among 902 HIV-infected women in the Women's Interagency HIV Study: N-acetyl-β-d-glucosaminidase (NAG), kidney injury molecule-1 (KIM-1), alpha-1 microglobulin (α1m), interleukin 18, neutrophil gelatinase-associated lipocalin, albumin-to-creatinine ratio, liver fatty acid-binding protein and α-1-acid-glycoprotein. A group-based cluster method classified participants into three distinct clusters using the three most distinguishing biomarkers (NAG, KIM-1 and α1m), independent of the study outcomes. We then evaluated associations of each cluster with incident CKD (estimated glomerular filtration rate <60 mL/min/1.73 m(2) by cystatin C) and all-cause mortality, adjusting for traditional and HIV-related risk factors.ResultsOver 8 years of follow-up, 177 CKD events and 128 deaths occurred. The first set of clusters partitioned women into three groups, containing 301 (Cluster 1), 470 (Cluster 2) and 131 (Cluster 3) participants. The rate of CKD incidence was 13, 21 and 50% across the three clusters; mortality rates were 7.3, 13 and 34%. After multivariable adjustment, Cluster 3 remained associated with a nearly 3-fold increased risk of both CKD and mortality, relative to Cluster 1 (both P < 0.001). The addition of the multi-biomarker cluster to the multivariable model improved discrimination for CKD (c-statistic = 0.72-0.76, P = 0.0029), but only modestly for mortality (c = 0.79-0.80, P = 0.099). Clusters derived with all eight markers were no better for discrimination than the three-biomarker clusters.ConclusionsFor predicting incident CKD in HIV-infected women, clusters developed from three urine-based kidney disease biomarkers were as effective as an eight-marker panel in improving risk discrimination
    corecore